

1. find the dimension of linear space, calculate coordinates of an element in a new basis, solve the eigenvalue problem of linear operator given by a matrix (tensor), find the set of principle directions. - [X1A_U01+++]
2. find the general and particle solution of partial differential equation of first and second order -
[X1A_U01+++, X1A_U02++, X1A_W01++]
3. find the extremizing function by solving Euler-Lagrange equation, give basic examples of calculus of variations [X1A_U01+++, X1A_U02++, X1A_U04++, X1A_W01++]
4. find the Fourier series and Fourier transform of a given function - [X1A_U01++++, X1A_U02++, X1A_U04++]

Social competencies:

1. can think and behave in good mathematical manner in the area of tensor calculus, partial differential equations, Fourier series and Fourier transform and calculus of variation - [K_K01+, K_K04++, K_K06+]

Assessment methods of study outcomes

The lecture:

-written test concerning mainly the theoretic part of the subject (but practical exercises are also admissible.
Classes :
evaluation of written tests and the direct activity during the classes (solving problems and preparing reports)
-continuous evaluation during each meeting - taking into account the activity in discussion and in cooperation concerning practical exercises.
Getting extra points related with activity, in partucular:
-presenting reports concerning applications of theory in different branches or putting the theory in history of mathematics -notes concerning the improvement of basic materials;
-active participation in consultations.

Course description

I. Tensor calculus

1. Background of elementary linear algebra
2. Linear space (linear dependence and independence of vectors, a basis of a linear space)
3. Basic products of vectors.
4. Linear operators (Tensors as linear operators)
5. Transformations of a coordinate system
6. Eigenvalue problem
II. Partial differential equations
7. Basic notions
8. The boundary and initial conditions
9. Linear partial differential equations of first order
10. Partial differential equations of second order (canonical form, the most known examples, conversion to the canonical form)
III. Fourier series and Fourier transforms
11. Separating of variables as justification for the theory of Fourier series
12. Approximating the function by a trigonometric series.
13. Fourier series of a given function, Fourier sine (cosine) series, Fourier series expansion in the interval [-I,I], Fourier series in a complex form
14. Fourier integral of a function f absolutely integrable on R
15. Sine, cosine and complex Fourier transform
16. Fundamental properties of Fourier transform useful in applications
17. Applications of Fourier series and Fourier transforms to differential equations, algorithm of finding solution of differential equations by Fourier transforms
IV. Calculus of variations
18. Several examples which lead to variational problems defined by integral functional
19. The necessary condition for minimizing problem - the Euler-Lagrange equation
20. Analogies between the extremum of a real valued function on a real line and the extremum of a functional.
21. Finding of an extremizing function in several classical problems

Basic bibliography:

1. D. J. Hartfiel, Elementary Linear Algebra, PWS Publishers (a division of Wadsworth) Inc., Boston 1987.
2. M. Itskov, Tensor Algebra and Tensor Analysis for Engineers with Applications to Continuum Mechanics, Springer-Verlag, Berlin Heidelberg New York, 2007.
3. G. E. Mase, Theory and Problems of Continuum Mechanics, McGraw-Hill Company Inc., 1970.
4. G. T. Mase and G. E. Mase, Continuum Mechanics for Engeneers, CRC Press LLC, London New York Washington 1999.
5. Tyn Myint-U, Partial Differential Equations of Mathematical Physics, American Elesevier Publishing Co.,Inc., 1973.
6. H. F. Wienberger, A First Course in Partial Differential Equations, John Wiley\&\#38;\#38;Sons Inc., 1965.
7. R. Weinstock, Calculus of Variations, McGraw-Hill Book Company Inc., 1952.
8. T. Trajdos, Matematyka dla inżynierów, Wydawnictwo Naukowo-Techniczne, Warszawa, 1974
9. I. M. Gelfand i S. W. Fomin, Rachunek wariacyjny, Państwowe Wydawnictwo Naukowe, Warszawa, 1972
10. R. Leitner i J. Zacharski, Zarys matematyki wyższej, Wydawnictwo Naukowo-Techniczne , Warszawa, 1998
11. W. Krysicki i L. Włodarski, Analiza matematyczna w zadaniach, Państwowe Wydawnictwo Naukowe, Warszawa, 1974
12. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1 Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław, 2003
13. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 2 Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław, 2005
14. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1 Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2003
15. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 2 Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2005

Additional bibliography:

1. D. L. Powers, Elementary Differential Equations with Boundary Value Problems, PWS Publishers (a division of Wadsworth) Inc., Boston 1985.
2. E. W. Swokowski, Calculus with analytic geometry, PWS Publishers (a division of Wadsworth) Inc., Boston 1983.

Result of average student's workload

Activity		Time (working hours)
1. Active participation in meetings (lectures and classes) 2. Active participation in consultations with posing questions 3. Solving exercises designed for independent work 4. Independent studying theoretical questions (notions, algorithms, theorems, 5. Preparing to tests		$\begin{array}{\|l} 45 \\ 10 \\ 10 \\ 10 \\ 20 \\ \hline \end{array}$
Student's workload		
Source of workload	hours	ECTS
Total workload	95	3
Contact hours	55	2
Practical activities	40	1

